Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11934-11951, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571030

RESUMO

Optical coherence tomography (OCT) can resolve biological three-dimensional tissue structures, but it is inevitably plagued by speckle noise that degrades image quality and obscures biological structure. Recently unsupervised deep learning methods are becoming more popular in OCT despeckling but they still have to use unpaired noisy-clean images or paired noisy-noisy images. To address the above problem, we propose what we believe to be a novel unsupervised deep learning method for OCT despeckling, termed Double-free Net, which eliminates the need for ground truth data and repeated scanning by sub-sampling noisy images and synthesizing noisier images. In comparison to existing unsupervised methods, Double-free Net obtains superior denoising performance when trained on datasets comprising retinal and human tissue images without clean images. The efficacy of Double-free Net in denoising holds significant promise for diagnostic applications in retinal pathologies and enhances the accuracy of retinal layer segmentation. Results demonstrate that Double-free Net outperforms state-of-the-art methods and exhibits strong convenience and adaptability across different OCT images.


Assuntos
Algoritmos , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Retina/diagnóstico por imagem , Cintilografia , Processamento de Imagem Assistida por Computador/métodos
2.
Opt Express ; 31(13): 20696-20714, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381187

RESUMO

Low-light optical coherence tomography (OCT) images generated when using low input power, low-quantum-efficiency detection units, low exposure time, or facing high-reflective surfaces, have low bright and signal-to-noise rates (SNR), and restrict OCT technique and clinical applications. While low input power, low quantum efficiency, and low exposure time can help reduce the hardware requirements and accelerate imaging speed; high-reflective surfaces are unavoidable sometimes. Here we propose a deep-learning-based technique to brighten and denoise low-light OCT images, termed SNR-Net OCT. The proposed SNR-Net OCT deeply integrated a conventional OCT setup and a residual-dense-block U-Net generative adversarial network with channel-wise attention connections trained using a customized large speckle-free SNR-enhanced brighter OCT dataset. Results demonstrated that the proposed SNR-Net OCT can brighten low-light OCT images and remove the speckle noise effectively, with enhancing SNR and maintaining the tissue microstructures well. Moreover, compared to the hardware-based techniques, the proposed SNR-Net OCT can be of lower cost and better performance.

3.
Biomed Opt Express ; 14(6): 2591-2607, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342716

RESUMO

High-resolution spectral domain optical coherence tomography (SD-OCT) is a vital clinical technique that suffers from the inherent compromise between transverse resolution and depth of focus (DOF). Meanwhile, speckle noise worsens OCT imaging resolving power and restricts potential resolution-enhancement techniques. Multiple aperture synthetic (MAS) OCT transmits light signals and records sample echoes along a synthetic aperture to extend DOF, acquired by time-encoding or optical path length encoding. In this work, a deep-learning-based multiple aperture synthetic OCT termed MAS-Net OCT, which integrated a speckle-free model based on self-supervised learning, was proposed. MAS-Net was trained on datasets generated by the MAS OCT system. Here we performed experiments on homemade microparticle samples and various biological tissues. Results demonstrated that the proposed MAS-Net OCT could effectively improve the transverse resolution in a large imaging depth as well as reduced most speckle noise.

4.
Bioeng Transl Med ; 8(1): e10372, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684097

RESUMO

Placental villi play a vital role in human fetal development, acting as the bridge of material exchange between the maternal and fetal. The abnormal morphology of placental villi is closely related to placental circulation disorder and pregnancy complications. Revealing placental villi three-dimensional (3D) morphology of common obstetric complications and healthy pregnancies provides a new perspective for studying the role of the placenta and its villi in the development of pregnancy diseases. In this study, we established a noninvasive, high-resolution 3D imaging platform via optical coherence tomography to reveal placental villi 3D morphological information of diseased and normal placentae. For the first time, 3D morphologies of placental villous tree structures in common obstetric complications were quantitatively revealed and corresponding 3D information could visualize the morphological characteristics of the placental villous tree from a more intuitive perspective, providing helpful information to the study of fetal development, feto-maternal material exchange, and gestational complications treatment.

5.
Opt Express ; 30(11): 18919-18938, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221682

RESUMO

Optical coherence tomography (OCT), a promising noninvasive bioimaging technique, can resolve sample three-dimensional microstructures. However, speckle noise imposes obvious limitations on OCT resolving capabilities. Here we proposed a deep-learning-based speckle-modulating OCT based on a hybrid-structure network, residual-dense-block U-Net generative adversarial network (RDBU-Net GAN), and further conducted a comprehensively comparative study to explore multi-type deep-learning architectures' abilities to extract speckle pattern characteristics and remove speckle, and resolve microstructures. This is the first time that network comparative study has been performed on a customized dataset containing mass more-general speckle patterns obtained from a custom-built speckle-modulating OCT, but not on retinal OCT datasets with limited speckle patterns. Results demonstrated that the proposed RDBU-Net GAN has a more excellent ability to extract speckle pattern characteristics and remove speckle, and resolve microstructures. This work will be useful for future studies on OCT speckle removing and deep-learning-based speckle-modulating OCT.


Assuntos
Aprendizado Profundo , Tomografia de Coerência Óptica , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
6.
Opt Express ; 30(8): 12215-12227, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472861

RESUMO

Optical coherence tomography (OCT), a promising noninvasive bioimaging technique, has become one of the most successful optical technologies implemented in medicine and clinical practice. Here we report a novel technique of depth-resolved transverse-plane motion tracking with configurable measurement features via optical coherence tomography, termed OCT-MT. Based on OCT circular scanning combined with speckle spatial oversampling, the OCT-MT technique can perform depth-resolved transverse-plane motion tracking. Benefitting from the optical interference and depth-resolved feature, the proposed OCT-MT can reduce the requirements on the input power of the irradiation signal and the surface reflectivity and roughness of the target, when performing motion tracking. Furthermore, OCT-MT can conduct such kind of motion tracking with configurable measurement ranges and resolutions by configuring A-line number per scanning circle, circular scanning radius, and A-line scanning time. The proposed OCT-MT technique may expand the ability of motion tracking for OCT in addition to imaging.


Assuntos
Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...